Combination Sum 39
Description
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note: All numbers (including target) will be positive integers. The solution set must not contain duplicate combinations. For example, given candidate set [2, 3, 6, 7] and target 7, A solution set is:
[
[7],
[2, 2, 3]
]
Hint
since it requires no duplicate combinations. so sort it firstly and then do DFS;
Method
one : backtracking (DFS) two : DP (like bag problem)
Time & Space
for one : o(n^high) for two : o(n ^3)
Code
one :
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> ans = new ArrayList<List<Integer>>();
Arrays.sort(candidates);
DFSum(candidates, target, ans, new ArrayList<Integer>(), 0);
return ans;
}
public void DFSum(int[] candidates, int target,
List<List<Integer>> ans,
List<Integer> list,
int pos){
if (target == 0){
ans.add(new ArrayList<Integer>(list));
return;
}
for (int i = pos; i < candidates.length; i++){
if (candidates[i] > target){
return;
}
list.add(candidates[i]);
DFSum(candidates, target - candidates[i], ans, list, i);
list.remove(list.size() - 1);
}
}
}
Two :
public List> combinationSum(int[] candidates, int target){
List
>> dp = new ArrayList
>>();
Arrays.sort(candidates);
for (int i = 1; i <= target; i++){
List
> list = new ArrayList
>();
for (int j = 0; j < candidates.length && candidates[j] <= i; j++){
if (candidates[j] == i){
List
}
dp.add(list);
}
return dp.get(target - 1);
}