LRU Cache 146
Description
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Hint
double linked list + hashmap OOD
Method
Time & Space
o(1)
Code
public class LRUCache {
class Node{
int key;
int value;
Node pre;
Node next;
public Node(int key, int value){
this.key = key;
this.value = value;
}
}
class DoubleLinkedList{
Node head;
Node tail;
public DoubleLinkedList(){
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.pre = head;
}
public void moveToHead(Node node){
if (node != head.next){
node.next.pre = node.pre;
node.pre.next = node.next;
node.next = head.next;
head.next.pre = node;
head.next = node;
node.pre = head;
}
}
public Node remove(){
if (head.next != tail){
Node n = tail.pre;
tail.pre = n.pre;
n.pre.next = tail;
return n;
}
return null;
}
public void add(Node node){
node.next = head.next;
head.next.pre = node;
node.pre = head;
head.next = node;
}
}
DoubleLinkedList list;
int size;
HashMap<Integer, Node> map;
public LRUCache(int capacity) {
list = new DoubleLinkedList();
size = capacity;
map = new HashMap<Integer, Node>();
}
public int get(int key) {
if (map.containsKey(key)){
Node node = map.get(key);
list.moveToHead(node);
return node.value;
} else {
return -1;
}
}
public void set(int key, int value) {
if (map.containsKey(key)){
Node node = map.get(key);
node.value = value;
list.moveToHead(node);
} else {
if (map.size() == size){
Node remove = list.remove();
map.remove(remove.key);
}
Node n = new Node(key, value);
map.put(key, n);
list.add(n);
}
}
}