2.25 Validate Binary Search Tree
Description
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greater than the node's key. Both the left and right subtrees must also be binary search trees. Example 1: 2 / \ 1 3 Binary tree [2,1,3], return true. Example 2: 1 / \ 2 3 Binary tree [1,2,3], return false.
Method
one : recursive use min and max value to check the val
two : iteration inorder traversal if node.val <= pre.val it false
Time and Space Complexity
both O(n)
Code
one :
public boolean isValidBST(TreeNode root) {
if (root == null){
return true;
}
return helper(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
private boolean helper(TreeNode root, long min, long max){
if (root == null){
return true;
}
if (root.val >= max || root.val <= min){
return false;
}
return helper(root.left, min, root.val) && helper(root.right, root.val, max);
}
two:
public boolean isValidBST(TreeNode root){
if (root == null){
return true;
}
Stack<TreeNode> stack = new Stack<TreeNode>();
TreeNode pre = null;
TreeNode cur = root;
while (!stack.isEmpty() || cur != null){
if (cur != null){
stack.push(cur);
cur = cur.left;
} else {
TreeNode p = stack.pop();
if (pre != null && p.val <= pre.val){
return false;
}
pre = p;
cur = p.right;
}
}
return true;
}