3.1 Find the Duplicate Number
Description
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note: You must not modify the array (assume the array is read only). You must use only constant, O(1) extra space. Your runtime complexity should be less than O(n2). There is only one duplicate number in the array, but it could be repeated more than once.
Method
Bucket Sort not o (1) space
fast / slow pointers similar with find cycle of linkedlist
Time and Space Complexity
o(n)
Code
not o(1) extra space public class Solution {
public int findDuplicate(int[] nums) {
if (nums == null || nums.length == 0){
return 0;
}
int n = nums.length;
int[] arr = new int[n - 1];
for (int i = 0; i < nums.length; i++){
if (arr[nums[i] - 1] != 0){
return nums[i];
} else {
arr[nums[i] - 1] = nums[i];
}
}
return 0;
}
}
public class Solution {
public int findDuplicate(int[] nums) {
if (nums == null || nums.length == 0){
return 0;
}
int slow = 0;
int fast = 0;
int finder = 0;
while (true){
slow = nums[slow];
fast = nums[nums[fast]];
if (slow == fast){
break;
}
}
while (true){
slow = nums[slow];
finder = nums[finder];
if (slow == finder){
break;
}
}
return slow;
}
}